zig/lib/fuzzer.zig
Loris Cro f8fe503146 fuzz testing: implement initial macos support
This commit implements the linker-related code
required to have the `zig init` canyoufindme test
succeed on macos.

It fixes usage of the linker in order to account
for macos specific symbol mangling and introduces
some checks in the fuzzer code to prevent crashes
in case that instrumented code is invoked before
`fuzz_init` runs.

`@disableInstrumentation` has been added to the
start code to help reduce the amount of (needlessly)
instrumented code that runs, but the builtin is
active only in the scope where it's used, meaning
that any non-inlined function call that happens in
that same scope will still have instrumentation
enabled unless it too gets its own
`@disableInstrumentation` call.

Removing temporarily the code that bails out from
instrumentation callbacks when the fuzzer has not
been inited can be used to turn early (and wasteful)
execution of instrumented code into a crash, helping
finding places where to put more calls to
`@disableInstrumentation`.
2025-02-27 16:32:35 +01:00

676 lines
27 KiB
Zig

const builtin = @import("builtin");
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const fatal = std.process.fatal;
const SeenPcsHeader = std.Build.Fuzz.abi.SeenPcsHeader;
pub const std_options = std.Options{
.logFn = logOverride,
};
var log_file: ?std.fs.File = null;
fn logOverride(
comptime level: std.log.Level,
comptime scope: @Type(.enum_literal),
comptime format: []const u8,
args: anytype,
) void {
const f = if (log_file) |f| f else return;
const prefix1 = comptime level.asText();
const prefix2 = if (scope == .default) ": " else "(" ++ @tagName(scope) ++ "): ";
f.writer().print(prefix1 ++ prefix2 ++ format ++ "\n", args) catch @panic("failed to write to fuzzer log");
}
/// Helps determine run uniqueness in the face of recursion.
export threadlocal var __sancov_lowest_stack: usize = 0;
export fn __sanitizer_cov_trace_const_cmp1(arg1: u8, arg2: u8) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_cmp1(arg1: u8, arg2: u8) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_const_cmp2(arg1: u16, arg2: u16) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_cmp2(arg1: u16, arg2: u16) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_const_cmp4(arg1: u32, arg2: u32) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_cmp4(arg1: u32, arg2: u32) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_const_cmp8(arg1: u64, arg2: u64) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_cmp8(arg1: u64, arg2: u64) void {
handleCmp(@returnAddress(), arg1, arg2);
}
export fn __sanitizer_cov_trace_switch(val: u64, cases_ptr: [*]u64) void {
const pc = @returnAddress();
const len = cases_ptr[0];
const val_size_in_bits = cases_ptr[1];
const cases = cases_ptr[2..][0..len];
fuzzer.traceValue(pc ^ val);
_ = val_size_in_bits;
_ = cases;
//std.log.debug("0x{x}: switch on value {d} ({d} bits) with {d} cases", .{
// pc, val, val_size_in_bits, cases.len,
//});
}
export fn __sanitizer_cov_trace_pc_indir(callee: usize) void {
// Not valuable because we already have pc tracing via 8bit counters.
_ = callee;
//const pc = @returnAddress();
//fuzzer.traceValue(pc ^ callee);
//std.log.debug("0x{x}: indirect call to 0x{x}", .{ pc, callee });
}
export fn __sanitizer_cov_8bit_counters_init(start: usize, end: usize) void {
// clang will emit a call to this function when compiling with code coverage instrumentation.
// however fuzzer_init() does not need this information, since it directly reads from the symbol table.
_ = start;
_ = end;
}
export fn __sanitizer_cov_pcs_init(start: usize, end: usize) void {
// clang will emit a call to this function when compiling with code coverage instrumentation.
// however fuzzer_init() does not need this information, since it directly reads from the symbol table.
_ = start;
_ = end;
}
fn handleCmp(pc: usize, arg1: u64, arg2: u64) void {
fuzzer.traceValue(pc ^ arg1 ^ arg2);
// std.log.debug("0x{x}: comparison of {d} and {d}", .{ pc, arg1, arg2 });
}
const Fuzzer = struct {
inited: bool = false,
rng: std.Random.DefaultPrng,
pcs: []const usize,
pc_counters: []u8,
n_runs: usize,
traced_comparisons: std.AutoArrayHashMapUnmanaged(usize, void),
/// Tracks which PCs have been seen across all runs that do not crash the fuzzer process.
/// Stored in a memory-mapped file so that it can be shared with other
/// processes and viewed while the fuzzer is running.
seen_pcs: MemoryMappedList,
cache_dir: std.fs.Dir,
/// Identifies the file name that will be used to store coverage
/// information, available to other processes.
coverage_id: u64,
unit_test_name: []const u8,
/// The index corresponds to the file name within the f/ subdirectory.
/// The string is the input.
/// This data is read-only; it caches what is on the filesystem.
corpus: std.ArrayListUnmanaged(Input),
corpus_directory: std.Build.Cache.Directory,
/// The next input that will be given to the testOne function. When the
/// current process crashes, this memory-mapped file is used to recover the
/// input.
///
/// The file size corresponds to the capacity. The length is not stored
/// and that is the next thing to work on!
input: MemoryMappedList,
const Input = struct {
bytes: []u8,
last_traced_comparison: usize,
};
const Slice = extern struct {
ptr: [*]const u8,
len: usize,
fn toZig(s: Slice) []const u8 {
return s.ptr[0..s.len];
}
fn fromZig(s: []const u8) Slice {
return .{
.ptr = s.ptr,
.len = s.len,
};
}
};
fn init(f: *Fuzzer, cache_dir: std.fs.Dir, pc_counters: []u8, pcs: []const usize) !void {
f.cache_dir = cache_dir;
f.pc_counters = pc_counters;
f.pcs = pcs;
log_file = fuzzer.cache_dir.createFile("tmp/libfuzzer.log", .{}) catch
@panic("failed to open fuzzer log file");
// Choose a file name for the coverage based on a hash of the PCs that will be stored within.
const pc_digest = std.hash.Wyhash.hash(0, std.mem.sliceAsBytes(pcs));
f.coverage_id = pc_digest;
const hex_digest = std.fmt.hex(pc_digest);
const coverage_file_path = "v/" ++ hex_digest;
// Layout of this file:
// - Header
// - list of PC addresses (usize elements)
// - list of hit flag, 1 bit per address (stored in u8 elements)
const coverage_file = createFileBail(cache_dir, coverage_file_path, .{
.read = true,
.truncate = false,
});
const n_bitset_elems = (pcs.len + @bitSizeOf(usize) - 1) / @bitSizeOf(usize);
comptime assert(SeenPcsHeader.trailing[0] == .pc_bits_usize);
comptime assert(SeenPcsHeader.trailing[1] == .pc_addr);
const bytes_len = @sizeOf(SeenPcsHeader) +
n_bitset_elems * @sizeOf(usize) +
pcs.len * @sizeOf(usize);
const existing_len = coverage_file.getEndPos() catch |err| {
fatal("unable to check len of coverage file: {s}", .{@errorName(err)});
};
if (existing_len == 0) {
coverage_file.setEndPos(bytes_len) catch |err| {
fatal("unable to set len of coverage file: {s}", .{@errorName(err)});
};
} else if (existing_len != bytes_len) {
fatal("incompatible existing coverage file (differing lengths)", .{});
}
f.seen_pcs = MemoryMappedList.init(coverage_file, existing_len, bytes_len) catch |err| {
fatal("unable to init coverage memory map: {s}", .{@errorName(err)});
};
if (existing_len != 0) {
const existing_pcs_bytes = f.seen_pcs.items[@sizeOf(SeenPcsHeader) + @sizeOf(usize) * n_bitset_elems ..][0 .. pcs.len * @sizeOf(usize)];
const existing_pcs = std.mem.bytesAsSlice(usize, existing_pcs_bytes);
for (existing_pcs, pcs, 0..) |old, new, i| {
if (old != new) {
fatal("incompatible existing coverage file (differing PC at index {d}: {x} != {x})", .{
i, old, new,
});
}
}
} else {
const header: SeenPcsHeader = .{
.n_runs = 0,
.unique_runs = 0,
.pcs_len = pcs.len,
};
f.seen_pcs.appendSliceAssumeCapacity(std.mem.asBytes(&header));
f.seen_pcs.appendNTimesAssumeCapacity(0, n_bitset_elems * @sizeOf(usize));
f.seen_pcs.appendSliceAssumeCapacity(std.mem.sliceAsBytes(pcs));
}
f.inited = true;
}
fn initNextInput(f: *Fuzzer) void {
while (true) {
const i = f.corpus.items.len;
var buf: [30]u8 = undefined;
const input_sub_path = std.fmt.bufPrint(&buf, "{d}", .{i}) catch unreachable;
const input = f.corpus_directory.handle.readFileAlloc(gpa, input_sub_path, 1 << 31) catch |err| switch (err) {
error.FileNotFound => {
// Make this one the next input.
const input_file = f.corpus_directory.handle.createFile(input_sub_path, .{
.exclusive = true,
.truncate = false,
.read = true,
}) catch |e| switch (e) {
error.PathAlreadyExists => continue,
else => fatal("unable to create '{}{d}: {s}", .{ f.corpus_directory, i, @errorName(err) }),
};
errdefer input_file.close();
// Initialize the mmap for the current input.
f.input = MemoryMappedList.create(input_file, 0, std.heap.page_size_max) catch |e| {
fatal("unable to init memory map for input at '{}{d}': {s}", .{
f.corpus_directory, i, @errorName(e),
});
};
break;
},
else => fatal("unable to read '{}{d}': {s}", .{ f.corpus_directory, i, @errorName(err) }),
};
errdefer gpa.free(input);
f.corpus.append(gpa, .{
.bytes = input,
.last_traced_comparison = 0,
}) catch |err| oom(err);
}
}
fn addCorpusElem(f: *Fuzzer, input: []const u8) !void {
try f.corpus.append(gpa, .{
.bytes = try gpa.dupe(u8, input),
.last_traced_comparison = 0,
});
}
fn start(f: *Fuzzer) !void {
const rng = fuzzer.rng.random();
// Grab the corpus which is namespaced based on `unit_test_name`.
{
if (f.unit_test_name.len == 0) fatal("test runner never set unit test name", .{});
const sub_path = try std.fmt.allocPrint(gpa, "f/{s}", .{f.unit_test_name});
f.corpus_directory = .{
.handle = f.cache_dir.makeOpenPath(sub_path, .{}) catch |err|
fatal("unable to open corpus directory 'f/{s}': {s}", .{ sub_path, @errorName(err) }),
.path = sub_path,
};
initNextInput(f);
}
assert(f.n_runs == 0);
// If the corpus is empty, synthesize one input.
if (f.corpus.items.len == 0) {
const len = rng.uintLessThanBiased(usize, 200);
const slice = try gpa.alloc(u8, len);
rng.bytes(slice);
f.input.appendSliceAssumeCapacity(slice);
try f.corpus.append(gpa, .{
.bytes = slice,
.last_traced_comparison = 0,
});
runOne(f, 0);
}
while (true) {
const chosen_index = rng.uintLessThanBiased(usize, f.corpus.items.len);
const modification = rng.enumValue(Mutation);
f.mutateAndRunOne(chosen_index, modification);
}
}
/// `x` represents a possible branch. It is the PC address of the possible
/// branch site, hashed together with the value(s) used that determine to
/// where it branches.
fn traceValue(f: *Fuzzer, x: usize) void {
errdefer |err| oom(err);
if (f.inited) {
try f.traced_comparisons.put(gpa, x, {});
}
}
const Mutation = enum {
remove_byte,
modify_byte,
add_byte,
};
fn mutateAndRunOne(f: *Fuzzer, corpus_index: usize, mutation: Mutation) void {
const rng = fuzzer.rng.random();
f.input.clearRetainingCapacity();
const old_input = f.corpus.items[corpus_index].bytes;
f.input.ensureTotalCapacity(old_input.len + 1) catch @panic("mmap file resize failed");
sw: switch (mutation) {
.remove_byte => {
if (old_input.len == 0) continue :sw .add_byte;
const omitted_index = rng.uintLessThanBiased(usize, old_input.len);
f.input.appendSliceAssumeCapacity(old_input[0..omitted_index]);
f.input.appendSliceAssumeCapacity(old_input[omitted_index + 1 ..]);
},
.modify_byte => {
if (old_input.len == 0) continue :sw .add_byte;
const modified_index = rng.uintLessThanBiased(usize, old_input.len);
f.input.appendSliceAssumeCapacity(old_input);
f.input.items[modified_index] = rng.int(u8);
},
.add_byte => {
const modified_index = if (old_input.len == 0) 0 else rng.uintLessThanBiased(usize, old_input.len);
f.input.appendSliceAssumeCapacity(old_input[0..modified_index]);
f.input.appendAssumeCapacity(rng.int(u8));
f.input.appendSliceAssumeCapacity(old_input[modified_index..]);
},
}
runOne(f, corpus_index);
}
fn runOne(f: *Fuzzer, corpus_index: usize) void {
const header: *volatile SeenPcsHeader = @ptrCast(f.seen_pcs.items[0..@sizeOf(SeenPcsHeader)]);
f.traced_comparisons.clearRetainingCapacity();
@memset(f.pc_counters, 0);
__sancov_lowest_stack = std.math.maxInt(usize);
fuzzer_one(@volatileCast(f.input.items.ptr), f.input.items.len);
f.n_runs += 1;
_ = @atomicRmw(usize, &header.n_runs, .Add, 1, .monotonic);
// Track code coverage from all runs.
comptime assert(SeenPcsHeader.trailing[0] == .pc_bits_usize);
const header_end_ptr: [*]volatile usize = @ptrCast(f.seen_pcs.items[@sizeOf(SeenPcsHeader)..]);
const remainder = f.pcs.len % @bitSizeOf(usize);
const aligned_len = f.pcs.len - remainder;
const seen_pcs = header_end_ptr[0..aligned_len];
const pc_counters = std.mem.bytesAsSlice([@bitSizeOf(usize)]u8, f.pc_counters[0..aligned_len]);
const V = @Vector(@bitSizeOf(usize), u8);
const zero_v: V = @splat(0);
var fresh = false;
var superset = true;
for (header_end_ptr[0..pc_counters.len], pc_counters) |*elem, *array| {
const v: V = array.*;
const mask: usize = @bitCast(v != zero_v);
const prev = @atomicRmw(usize, elem, .Or, mask, .monotonic);
fresh = fresh or (prev | mask) != prev;
superset = superset and (prev | mask) != mask;
}
if (remainder > 0) {
const i = pc_counters.len;
const elem = &seen_pcs[i];
var mask: usize = 0;
for (f.pc_counters[i * @bitSizeOf(usize) ..][0..remainder], 0..) |byte, bit_index| {
mask |= @as(usize, @intFromBool(byte != 0)) << @intCast(bit_index);
}
const prev = @atomicRmw(usize, elem, .Or, mask, .monotonic);
fresh = fresh or (prev | mask) != prev;
superset = superset and (prev | mask) != mask;
}
// First check if this is a better version of an already existing
// input, replacing that input.
if (superset or f.traced_comparisons.entries.len >= f.corpus.items[corpus_index].last_traced_comparison) {
const new_input = gpa.realloc(f.corpus.items[corpus_index].bytes, f.input.items.len) catch |err| oom(err);
f.corpus.items[corpus_index] = .{
.bytes = new_input,
.last_traced_comparison = f.traced_comparisons.count(),
};
@memcpy(new_input, @volatileCast(f.input.items));
_ = @atomicRmw(usize, &header.unique_runs, .Add, 1, .monotonic);
return;
}
if (!fresh) return;
// Input is already committed to the file system, we just need to open a new file
// for the next input.
// Pre-add it to the corpus list so that it does not get redundantly picked up.
f.corpus.append(gpa, .{
.bytes = gpa.dupe(u8, @volatileCast(f.input.items)) catch |err| oom(err),
.last_traced_comparison = f.traced_comparisons.entries.len,
}) catch |err| oom(err);
f.input.deinit();
initNextInput(f);
// TODO: also mark input as "hot" so it gets prioritized for checking mutations above others.
_ = @atomicRmw(usize, &header.unique_runs, .Add, 1, .monotonic);
}
};
fn createFileBail(dir: std.fs.Dir, sub_path: []const u8, flags: std.fs.File.CreateFlags) std.fs.File {
return dir.createFile(sub_path, flags) catch |err| switch (err) {
error.FileNotFound => {
const dir_name = std.fs.path.dirname(sub_path).?;
dir.makePath(dir_name) catch |e| {
fatal("unable to make path '{s}': {s}", .{ dir_name, @errorName(e) });
};
return dir.createFile(sub_path, flags) catch |e| {
fatal("unable to create file '{s}': {s}", .{ sub_path, @errorName(e) });
};
},
else => fatal("unable to create file '{s}': {s}", .{ sub_path, @errorName(err) }),
};
}
fn oom(err: anytype) noreturn {
switch (err) {
error.OutOfMemory => @panic("out of memory"),
}
}
var debug_allocator: std.heap.GeneralPurposeAllocator(.{}) = .init;
const gpa = switch (builtin.mode) {
.Debug => debug_allocator.allocator(),
.ReleaseFast, .ReleaseSmall, .ReleaseSafe => std.heap.smp_allocator,
};
var fuzzer: Fuzzer = .{
.rng = std.Random.DefaultPrng.init(0),
.input = undefined,
.pcs = undefined,
.pc_counters = undefined,
.n_runs = 0,
.cache_dir = undefined,
.seen_pcs = undefined,
.coverage_id = undefined,
.unit_test_name = &.{},
.corpus = .empty,
.corpus_directory = undefined,
.traced_comparisons = .empty,
};
/// Invalid until `fuzzer_init` is called.
export fn fuzzer_coverage_id() u64 {
return fuzzer.coverage_id;
}
var fuzzer_one: *const fn (input_ptr: [*]const u8, input_len: usize) callconv(.C) void = undefined;
export fn fuzzer_start(testOne: @TypeOf(fuzzer_one)) void {
fuzzer_one = testOne;
fuzzer.start() catch |err| oom(err);
}
export fn fuzzer_set_name(name_ptr: [*]const u8, name_len: usize) void {
fuzzer.unit_test_name = name_ptr[0..name_len];
}
export fn fuzzer_init(cache_dir_struct: Fuzzer.Slice) void {
// Linkers are expected to automatically add `__start_<section>` and
// `__stop_<section>` symbols when section names are valid C identifiers.
const pc_counters_start = switch (builtin.os.tag) {
.linux => @extern([*]u8, .{
.name = "__start___sancov_cntrs",
.linkage = .weak,
}) orelse fatal("missing __start___sancov_cntrs symbol", .{}),
.macos => @extern([*]u8, .{
.name = "\x01section$start$__DATA$__sancov_cntrs",
.linkage = .weak,
}) orelse fatal("missing section$start$__DATA$__sancov_cntrs symbol", .{}),
else => @compileError("TODO: implement fuzzing support for the target platform"),
};
const pc_counters_end = switch (builtin.os.tag) {
.linux => @extern([*]u8, .{
.name = "__stop___sancov_cntrs",
.linkage = .weak,
}) orelse fatal("missing __stop___sancov_cntrs symbol", .{}),
.macos => @extern([*]u8, .{
.name = "\x01section$end$__DATA$__sancov_cntrs",
.linkage = .weak,
}) orelse fatal("missing section$end$__DATA$__sancov_cntrs symbol", .{}),
else => @compileError("TODO: implement fuzzing support for the target platform"),
};
const pc_counters = pc_counters_start[0 .. pc_counters_end - pc_counters_start];
const pcs_start = switch (builtin.os.tag) {
.linux => @extern([*]usize, .{
.name = "__start___sancov_pcs1",
.linkage = .weak,
}) orelse fatal("missing __start___sancov_pcs1 symbol", .{}),
.macos => @extern([*]usize, .{
.name = "\x01section$start$__DATA_CONST$__sancov_pcs1",
.linkage = .weak,
}) orelse fatal("missing section$start$__DATA_CONST$__sancov_pcs1 symbol", .{}),
else => @compileError("TODO: implement fuzzing support for the target platform"),
};
const pcs_end = switch (builtin.os.tag) {
.linux => @extern([*]usize, .{
.name = "__stop___sancov_pcs1",
.linkage = .weak,
}) orelse fatal("missing __stop___sancov_pcs1 symbol", .{}),
.macos => @extern([*]usize, .{
.name = "\x01section$end$__DATA_CONST$__sancov_pcs1",
.linkage = .weak,
}) orelse fatal("missing section$end$__DATA_CONST$__sancov_pcs1 symbol", .{}),
else => @compileError("TODO: implement fuzzing support for the target platform"),
};
const pcs = pcs_start[0 .. pcs_end - pcs_start];
const cache_dir_path = cache_dir_struct.toZig();
const cache_dir = if (cache_dir_path.len == 0)
std.fs.cwd()
else
std.fs.cwd().makeOpenPath(cache_dir_path, .{ .iterate = true }) catch |err| {
fatal("unable to open fuzz directory '{s}': {s}", .{ cache_dir_path, @errorName(err) });
};
fuzzer.init(cache_dir, pc_counters, pcs) catch |err|
fatal("unable to init fuzzer: {s}", .{@errorName(err)});
}
export fn fuzzer_init_corpus_elem(input_ptr: [*]const u8, input_len: usize) void {
fuzzer.addCorpusElem(input_ptr[0..input_len]) catch |err|
fatal("failed to add corpus element: {s}", .{@errorName(err)});
}
/// Like `std.ArrayListUnmanaged(u8)` but backed by memory mapping.
pub const MemoryMappedList = struct {
/// Contents of the list.
///
/// Pointers to elements in this slice are invalidated by various functions
/// of this ArrayList in accordance with the respective documentation. In
/// all cases, "invalidated" means that the memory has been passed to this
/// allocator's resize or free function.
items: []align(std.heap.page_size_min) volatile u8,
/// How many bytes this list can hold without allocating additional memory.
capacity: usize,
/// The file is kept open so that it can be resized.
file: std.fs.File,
pub fn init(file: std.fs.File, length: usize, capacity: usize) !MemoryMappedList {
const ptr = try std.posix.mmap(
null,
capacity,
std.posix.PROT.READ | std.posix.PROT.WRITE,
.{ .TYPE = .SHARED },
file.handle,
0,
);
return .{
.file = file,
.items = ptr[0..length],
.capacity = capacity,
};
}
pub fn create(file: std.fs.File, length: usize, capacity: usize) !MemoryMappedList {
try file.setEndPos(capacity);
return init(file, length, capacity);
}
pub fn deinit(l: *MemoryMappedList) void {
l.file.close();
std.posix.munmap(@volatileCast(l.items.ptr[0..l.capacity]));
l.* = undefined;
}
/// Modify the array so that it can hold at least `additional_count` **more** items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureUnusedCapacity(l: *MemoryMappedList, additional_count: usize) !void {
return l.ensureTotalCapacity(l.items.len + additional_count);
}
/// If the current capacity is less than `new_capacity`, this function will
/// modify the array so that it can hold at least `new_capacity` items.
/// Invalidates element pointers if additional memory is needed.
pub fn ensureTotalCapacity(l: *MemoryMappedList, new_capacity: usize) !void {
if (l.capacity >= new_capacity) return;
const better_capacity = growCapacity(l.capacity, new_capacity);
return l.ensureTotalCapacityPrecise(better_capacity);
}
pub fn ensureTotalCapacityPrecise(l: *MemoryMappedList, new_capacity: usize) !void {
if (l.capacity >= new_capacity) return;
std.posix.munmap(@volatileCast(l.items.ptr[0..l.capacity]));
try l.file.setEndPos(new_capacity);
l.* = try init(l.file, l.items.len, new_capacity);
}
/// Invalidates all element pointers.
pub fn clearRetainingCapacity(l: *MemoryMappedList) void {
l.items.len = 0;
}
/// Append the slice of items to the list.
/// Asserts that the list can hold the additional items.
pub fn appendSliceAssumeCapacity(l: *MemoryMappedList, items: []const u8) void {
const old_len = l.items.len;
const new_len = old_len + items.len;
assert(new_len <= l.capacity);
l.items.len = new_len;
@memcpy(l.items[old_len..][0..items.len], items);
}
/// Extends the list by 1 element.
/// Never invalidates element pointers.
/// Asserts that the list can hold one additional item.
pub fn appendAssumeCapacity(l: *MemoryMappedList, item: u8) void {
const new_item_ptr = l.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list is resized.
/// Never invalidates element pointers.
/// Asserts that the list can hold one additional item.
pub fn addOneAssumeCapacity(l: *MemoryMappedList) *volatile u8 {
assert(l.items.len < l.capacity);
l.items.len += 1;
return &l.items[l.items.len - 1];
}
/// Append a value to the list `n` times.
/// Never invalidates element pointers.
/// The function is inline so that a comptime-known `value` parameter will
/// have better memset codegen in case it has a repeated byte pattern.
/// Asserts that the list can hold the additional items.
pub inline fn appendNTimesAssumeCapacity(l: *MemoryMappedList, value: u8, n: usize) void {
const new_len = l.items.len + n;
assert(new_len <= l.capacity);
@memset(l.items.ptr[l.items.len..new_len], value);
l.items.len = new_len;
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// Never invalidates element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// Asserts that the list can hold the additional items.
pub fn addManyAsSliceAssumeCapacity(l: *MemoryMappedList, n: usize) []volatile u8 {
assert(l.items.len + n <= l.capacity);
const prev_len = l.items.len;
l.items.len += n;
return l.items[prev_len..][0..n];
}
/// Called when memory growth is necessary. Returns a capacity larger than
/// minimum that grows super-linearly.
fn growCapacity(current: usize, minimum: usize) usize {
var new = current;
while (true) {
new = std.mem.alignForward(usize, new + new / 2, std.heap.page_size_max);
if (new >= minimum) return new;
}
}
};