zig/lib/std/http/Client.zig
Emil Lerch fcca3cd1a3
std.http: introduce options to http client to allow for raw uris
Addresses #17015 by introducing a new startWithOptions. The only option is currently is a flag
to use the provided URI as is, without modification when passed to the server. Normally, this
is not needed nor desired. However, some REST APIs may have requirements that cannot be satisfied
with the default handling.
2023-09-28 14:16:39 +03:00

1262 lines
46 KiB
Zig

//! Connecting and opening requests are threadsafe. Individual requests are not.
const std = @import("../std.zig");
const testing = std.testing;
const http = std.http;
const mem = std.mem;
const net = std.net;
const Uri = std.Uri;
const Allocator = mem.Allocator;
const assert = std.debug.assert;
const Client = @This();
const proto = @import("protocol.zig");
pub const default_connection_pool_size = 32;
pub const connection_pool_size = std.options.http_connection_pool_size;
allocator: Allocator,
ca_bundle: std.crypto.Certificate.Bundle = .{},
ca_bundle_mutex: std.Thread.Mutex = .{},
/// When this is `true`, the next time this client performs an HTTPS request,
/// it will first rescan the system for root certificates.
next_https_rescan_certs: bool = true,
/// The pool of connections that can be reused (and currently in use).
connection_pool: ConnectionPool = .{},
proxy: ?HttpProxy = null,
/// A set of linked lists of connections that can be reused.
pub const ConnectionPool = struct {
/// The criteria for a connection to be considered a match.
pub const Criteria = struct {
host: []const u8,
port: u16,
is_tls: bool,
};
const Queue = std.DoublyLinkedList(Connection);
pub const Node = Queue.Node;
mutex: std.Thread.Mutex = .{},
/// Open connections that are currently in use.
used: Queue = .{},
/// Open connections that are not currently in use.
free: Queue = .{},
free_len: usize = 0,
free_size: usize = connection_pool_size,
/// Finds and acquires a connection from the connection pool matching the criteria. This function is threadsafe.
/// If no connection is found, null is returned.
pub fn findConnection(pool: *ConnectionPool, criteria: Criteria) ?*Node {
pool.mutex.lock();
defer pool.mutex.unlock();
var next = pool.free.last;
while (next) |node| : (next = node.prev) {
if ((node.data.protocol == .tls) != criteria.is_tls) continue;
if (node.data.port != criteria.port) continue;
if (!mem.eql(u8, node.data.host, criteria.host)) continue;
pool.acquireUnsafe(node);
return node;
}
return null;
}
/// Acquires an existing connection from the connection pool. This function is not threadsafe.
pub fn acquireUnsafe(pool: *ConnectionPool, node: *Node) void {
pool.free.remove(node);
pool.free_len -= 1;
pool.used.append(node);
}
/// Acquires an existing connection from the connection pool. This function is threadsafe.
pub fn acquire(pool: *ConnectionPool, node: *Node) void {
pool.mutex.lock();
defer pool.mutex.unlock();
return pool.acquireUnsafe(node);
}
/// Tries to release a connection back to the connection pool. This function is threadsafe.
/// If the connection is marked as closing, it will be closed instead.
pub fn release(pool: *ConnectionPool, client: *Client, node: *Node) void {
pool.mutex.lock();
defer pool.mutex.unlock();
pool.used.remove(node);
if (node.data.closing) {
node.data.deinit(client);
return client.allocator.destroy(node);
}
if (pool.free_len >= pool.free_size) {
const popped = pool.free.popFirst() orelse unreachable;
pool.free_len -= 1;
popped.data.deinit(client);
client.allocator.destroy(popped);
}
if (node.data.proxied) {
pool.free.prepend(node); // proxied connections go to the end of the queue, always try direct connections first
} else {
pool.free.append(node);
}
pool.free_len += 1;
}
/// Adds a newly created node to the pool of used connections. This function is threadsafe.
pub fn addUsed(pool: *ConnectionPool, node: *Node) void {
pool.mutex.lock();
defer pool.mutex.unlock();
pool.used.append(node);
}
pub fn deinit(pool: *ConnectionPool, client: *Client) void {
pool.mutex.lock();
var next = pool.free.first;
while (next) |node| {
defer client.allocator.destroy(node);
next = node.next;
node.data.deinit(client);
}
next = pool.used.first;
while (next) |node| {
defer client.allocator.destroy(node);
next = node.next;
node.data.deinit(client);
}
pool.* = undefined;
}
};
/// An interface to either a plain or TLS connection.
pub const Connection = struct {
pub const buffer_size = std.crypto.tls.max_ciphertext_record_len;
pub const Protocol = enum { plain, tls };
stream: net.Stream,
/// undefined unless protocol is tls.
tls_client: *std.crypto.tls.Client,
protocol: Protocol,
host: []u8,
port: u16,
proxied: bool = false,
closing: bool = false,
read_start: u16 = 0,
read_end: u16 = 0,
read_buf: [buffer_size]u8 = undefined,
pub fn rawReadAtLeast(conn: *Connection, buffer: []u8, len: usize) ReadError!usize {
return switch (conn.protocol) {
.plain => conn.stream.readAtLeast(buffer, len),
.tls => conn.tls_client.readAtLeast(conn.stream, buffer, len),
} catch |err| {
// TODO: https://github.com/ziglang/zig/issues/2473
if (mem.startsWith(u8, @errorName(err), "TlsAlert")) return error.TlsAlert;
switch (err) {
error.TlsConnectionTruncated, error.TlsRecordOverflow, error.TlsDecodeError, error.TlsBadRecordMac, error.TlsBadLength, error.TlsIllegalParameter, error.TlsUnexpectedMessage => return error.TlsFailure,
error.ConnectionTimedOut => return error.ConnectionTimedOut,
error.ConnectionResetByPeer, error.BrokenPipe => return error.ConnectionResetByPeer,
else => return error.UnexpectedReadFailure,
}
};
}
pub fn fill(conn: *Connection) ReadError!void {
if (conn.read_end != conn.read_start) return;
const nread = try conn.rawReadAtLeast(conn.read_buf[0..], 1);
if (nread == 0) return error.EndOfStream;
conn.read_start = 0;
conn.read_end = @as(u16, @intCast(nread));
}
pub fn peek(conn: *Connection) []const u8 {
return conn.read_buf[conn.read_start..conn.read_end];
}
pub fn drop(conn: *Connection, num: u16) void {
conn.read_start += num;
}
pub fn readAtLeast(conn: *Connection, buffer: []u8, len: usize) ReadError!usize {
assert(len <= buffer.len);
var out_index: u16 = 0;
while (out_index < len) {
const available_read = conn.read_end - conn.read_start;
const available_buffer = buffer.len - out_index;
if (available_read > available_buffer) { // partially read buffered data
@memcpy(buffer[out_index..], conn.read_buf[conn.read_start..conn.read_end][0..available_buffer]);
out_index += @as(u16, @intCast(available_buffer));
conn.read_start += @as(u16, @intCast(available_buffer));
break;
} else if (available_read > 0) { // fully read buffered data
@memcpy(buffer[out_index..][0..available_read], conn.read_buf[conn.read_start..conn.read_end]);
out_index += available_read;
conn.read_start += available_read;
if (out_index >= len) break;
}
const leftover_buffer = available_buffer - available_read;
const leftover_len = len - out_index;
if (leftover_buffer > conn.read_buf.len) {
// skip the buffer if the output is large enough
return conn.rawReadAtLeast(buffer[out_index..], leftover_len);
}
try conn.fill();
}
return out_index;
}
pub fn read(conn: *Connection, buffer: []u8) ReadError!usize {
return conn.readAtLeast(buffer, 1);
}
pub const ReadError = error{
TlsFailure,
TlsAlert,
ConnectionTimedOut,
ConnectionResetByPeer,
UnexpectedReadFailure,
EndOfStream,
};
pub const Reader = std.io.Reader(*Connection, ReadError, read);
pub fn reader(conn: *Connection) Reader {
return Reader{ .context = conn };
}
pub fn writeAll(conn: *Connection, buffer: []const u8) !void {
return switch (conn.protocol) {
.plain => conn.stream.writeAll(buffer),
.tls => conn.tls_client.writeAll(conn.stream, buffer),
} catch |err| switch (err) {
error.BrokenPipe, error.ConnectionResetByPeer => return error.ConnectionResetByPeer,
else => return error.UnexpectedWriteFailure,
};
}
pub fn write(conn: *Connection, buffer: []const u8) !usize {
return switch (conn.protocol) {
.plain => conn.stream.write(buffer),
.tls => conn.tls_client.write(conn.stream, buffer),
} catch |err| switch (err) {
error.BrokenPipe, error.ConnectionResetByPeer => return error.ConnectionResetByPeer,
else => return error.UnexpectedWriteFailure,
};
}
pub const WriteError = error{
ConnectionResetByPeer,
UnexpectedWriteFailure,
};
pub const Writer = std.io.Writer(*Connection, WriteError, write);
pub fn writer(conn: *Connection) Writer {
return Writer{ .context = conn };
}
pub fn close(conn: *Connection, client: *const Client) void {
if (conn.protocol == .tls) {
// try to cleanly close the TLS connection, for any server that cares.
_ = conn.tls_client.writeEnd(conn.stream, "", true) catch {};
client.allocator.destroy(conn.tls_client);
}
conn.stream.close();
}
pub fn deinit(conn: *Connection, client: *const Client) void {
conn.close(client);
client.allocator.free(conn.host);
}
};
/// The mode of transport for requests.
pub const RequestTransfer = union(enum) {
content_length: u64,
chunked: void,
none: void,
};
/// The decompressor for response messages.
pub const Compression = union(enum) {
pub const DeflateDecompressor = std.compress.zlib.DecompressStream(Request.TransferReader);
pub const GzipDecompressor = std.compress.gzip.Decompress(Request.TransferReader);
pub const ZstdDecompressor = std.compress.zstd.DecompressStream(Request.TransferReader, .{});
deflate: DeflateDecompressor,
gzip: GzipDecompressor,
zstd: ZstdDecompressor,
none: void,
};
/// A HTTP response originating from a server.
pub const Response = struct {
pub const ParseError = Allocator.Error || error{
HttpHeadersInvalid,
HttpHeaderContinuationsUnsupported,
HttpTransferEncodingUnsupported,
HttpConnectionHeaderUnsupported,
InvalidContentLength,
CompressionNotSupported,
};
pub fn parse(res: *Response, bytes: []const u8, trailing: bool) ParseError!void {
var it = mem.tokenizeAny(u8, bytes[0 .. bytes.len - 4], "\r\n");
const first_line = it.next() orelse return error.HttpHeadersInvalid;
if (first_line.len < 12)
return error.HttpHeadersInvalid;
const version: http.Version = switch (int64(first_line[0..8])) {
int64("HTTP/1.0") => .@"HTTP/1.0",
int64("HTTP/1.1") => .@"HTTP/1.1",
else => return error.HttpHeadersInvalid,
};
if (first_line[8] != ' ') return error.HttpHeadersInvalid;
const status = @as(http.Status, @enumFromInt(parseInt3(first_line[9..12].*)));
const reason = mem.trimLeft(u8, first_line[12..], " ");
res.version = version;
res.status = status;
res.reason = reason;
while (it.next()) |line| {
if (line.len == 0) return error.HttpHeadersInvalid;
switch (line[0]) {
' ', '\t' => return error.HttpHeaderContinuationsUnsupported,
else => {},
}
var line_it = mem.tokenizeAny(u8, line, ": ");
const header_name = line_it.next() orelse return error.HttpHeadersInvalid;
const header_value = line_it.rest();
try res.headers.append(header_name, header_value);
if (trailing) continue;
if (std.ascii.eqlIgnoreCase(header_name, "content-length")) {
const content_length = std.fmt.parseInt(u64, header_value, 10) catch return error.InvalidContentLength;
if (res.content_length != null and res.content_length != content_length) return error.HttpHeadersInvalid;
res.content_length = content_length;
} else if (std.ascii.eqlIgnoreCase(header_name, "transfer-encoding")) {
// Transfer-Encoding: second, first
// Transfer-Encoding: deflate, chunked
var iter = mem.splitBackwardsScalar(u8, header_value, ',');
if (iter.next()) |first| {
const trimmed = mem.trim(u8, first, " ");
if (std.meta.stringToEnum(http.TransferEncoding, trimmed)) |te| {
if (res.transfer_encoding != null) return error.HttpHeadersInvalid;
res.transfer_encoding = te;
} else if (std.meta.stringToEnum(http.ContentEncoding, trimmed)) |ce| {
if (res.transfer_compression != null) return error.HttpHeadersInvalid;
res.transfer_compression = ce;
} else {
return error.HttpTransferEncodingUnsupported;
}
}
if (iter.next()) |second| {
if (res.transfer_compression != null) return error.HttpTransferEncodingUnsupported;
const trimmed = mem.trim(u8, second, " ");
if (std.meta.stringToEnum(http.ContentEncoding, trimmed)) |ce| {
res.transfer_compression = ce;
} else {
return error.HttpTransferEncodingUnsupported;
}
}
if (iter.next()) |_| return error.HttpTransferEncodingUnsupported;
} else if (std.ascii.eqlIgnoreCase(header_name, "content-encoding")) {
if (res.transfer_compression != null) return error.HttpHeadersInvalid;
const trimmed = mem.trim(u8, header_value, " ");
if (std.meta.stringToEnum(http.ContentEncoding, trimmed)) |ce| {
res.transfer_compression = ce;
} else {
return error.HttpTransferEncodingUnsupported;
}
}
}
}
inline fn int64(array: *const [8]u8) u64 {
return @as(u64, @bitCast(array.*));
}
fn parseInt3(nnn: @Vector(3, u8)) u10 {
const zero: @Vector(3, u8) = .{ '0', '0', '0' };
const mmm: @Vector(3, u10) = .{ 100, 10, 1 };
return @reduce(.Add, @as(@Vector(3, u10), nnn -% zero) *% mmm);
}
test parseInt3 {
const expectEqual = testing.expectEqual;
try expectEqual(@as(u10, 0), parseInt3("000".*));
try expectEqual(@as(u10, 418), parseInt3("418".*));
try expectEqual(@as(u10, 999), parseInt3("999".*));
}
version: http.Version,
status: http.Status,
reason: []const u8,
content_length: ?u64 = null,
transfer_encoding: ?http.TransferEncoding = null,
transfer_compression: ?http.ContentEncoding = null,
headers: http.Headers,
parser: proto.HeadersParser,
compression: Compression = .none,
skip: bool = false,
};
/// A HTTP request that has been sent.
///
/// Order of operations: request -> start[ -> write -> finish] -> wait -> read
pub const Request = struct {
uri: Uri,
client: *Client,
/// is null when this connection is released
connection: ?*ConnectionPool.Node,
method: http.Method,
version: http.Version = .@"HTTP/1.1",
headers: http.Headers,
transfer_encoding: RequestTransfer = .none,
redirects_left: u32,
handle_redirects: bool,
response: Response,
/// Used as a allocator for resolving redirects locations.
arena: std.heap.ArenaAllocator,
/// Frees all resources associated with the request.
pub fn deinit(req: *Request) void {
switch (req.response.compression) {
.none => {},
.deflate => |*deflate| deflate.deinit(),
.gzip => |*gzip| gzip.deinit(),
.zstd => |*zstd| zstd.deinit(),
}
req.headers.deinit();
req.response.headers.deinit();
if (req.response.parser.header_bytes_owned) {
req.response.parser.header_bytes.deinit(req.client.allocator);
}
if (req.connection) |connection| {
if (!req.response.parser.done) {
// If the response wasn't fully read, then we need to close the connection.
connection.data.closing = true;
}
req.client.connection_pool.release(req.client, connection);
}
req.arena.deinit();
req.* = undefined;
}
// This function must deallocate all resources associated with the request, or keep those which will be used
// This needs to be kept in sync with deinit and request
fn redirect(req: *Request, uri: Uri) !void {
assert(req.response.parser.done);
switch (req.response.compression) {
.none => {},
.deflate => |*deflate| deflate.deinit(),
.gzip => |*gzip| gzip.deinit(),
.zstd => |*zstd| zstd.deinit(),
}
req.client.connection_pool.release(req.client, req.connection.?);
req.connection = null;
const protocol = protocol_map.get(uri.scheme) orelse return error.UnsupportedUrlScheme;
const port: u16 = uri.port orelse switch (protocol) {
.plain => 80,
.tls => 443,
};
const host = uri.host orelse return error.UriMissingHost;
req.uri = uri;
req.connection = try req.client.connect(host, port, protocol);
req.redirects_left -= 1;
req.response.headers.clearRetainingCapacity();
req.response.parser.reset();
req.response = .{
.status = undefined,
.reason = undefined,
.version = undefined,
.headers = req.response.headers,
.parser = req.response.parser,
};
}
pub const StartError = Connection.WriteError || error{ InvalidContentLength, UnsupportedTransferEncoding };
pub const StartOptions = struct {
/// Specifies that the uri should be used as is
raw_uri: bool = false,
};
/// Send the request to the server.
pub fn start(req: *Request, options: StartOptions) StartError!void {
if (!req.method.requestHasBody() and req.transfer_encoding != .none) return error.UnsupportedTransferEncoding;
var buffered = std.io.bufferedWriter(req.connection.?.data.writer());
const w = buffered.writer();
try req.method.write(w);
try w.writeByte(' ');
if (req.method == .CONNECT) {
try w.writeAll(req.uri.host.?);
try w.writeByte(':');
try w.print("{}", .{req.uri.port.?});
} else {
if (req.connection.?.data.proxied) {
// proxied connections require the full uri
if (options.raw_uri) {
try w.print("{+/r}", .{req.uri});
} else {
try w.print("{+/}", .{req.uri});
}
} else {
if (options.raw_uri) {
try w.print("{/r}", .{req.uri});
} else {
try w.print("{/}", .{req.uri});
}
}
}
try w.writeByte(' ');
try w.writeAll(@tagName(req.version));
try w.writeAll("\r\n");
if (!req.headers.contains("host")) {
try w.writeAll("Host: ");
try w.writeAll(req.uri.host.?);
try w.writeAll("\r\n");
}
if (!req.headers.contains("user-agent")) {
try w.writeAll("User-Agent: zig/");
try w.writeAll(@import("builtin").zig_version_string);
try w.writeAll(" (std.http)\r\n");
}
if (!req.headers.contains("connection")) {
try w.writeAll("Connection: keep-alive\r\n");
}
if (!req.headers.contains("accept-encoding")) {
try w.writeAll("Accept-Encoding: gzip, deflate, zstd\r\n");
}
if (!req.headers.contains("te")) {
try w.writeAll("TE: gzip, deflate, trailers\r\n");
}
const has_transfer_encoding = req.headers.contains("transfer-encoding");
const has_content_length = req.headers.contains("content-length");
if (!has_transfer_encoding and !has_content_length) {
switch (req.transfer_encoding) {
.chunked => try w.writeAll("Transfer-Encoding: chunked\r\n"),
.content_length => |content_length| try w.print("Content-Length: {d}\r\n", .{content_length}),
.none => {},
}
} else {
if (has_content_length) {
const content_length = std.fmt.parseInt(u64, req.headers.getFirstValue("content-length").?, 10) catch return error.InvalidContentLength;
req.transfer_encoding = .{ .content_length = content_length };
} else if (has_transfer_encoding) {
const transfer_encoding = req.headers.getFirstValue("transfer-encoding").?;
if (std.mem.eql(u8, transfer_encoding, "chunked")) {
req.transfer_encoding = .chunked;
} else {
return error.UnsupportedTransferEncoding;
}
} else {
req.transfer_encoding = .none;
}
}
for (req.headers.list.items) |entry| {
if (entry.value.len == 0) continue;
try w.writeAll(entry.name);
try w.writeAll(": ");
try w.writeAll(entry.value);
try w.writeAll("\r\n");
}
try w.writeAll("\r\n");
try buffered.flush();
}
const TransferReadError = Connection.ReadError || proto.HeadersParser.ReadError;
const TransferReader = std.io.Reader(*Request, TransferReadError, transferRead);
fn transferReader(req: *Request) TransferReader {
return .{ .context = req };
}
fn transferRead(req: *Request, buf: []u8) TransferReadError!usize {
if (req.response.parser.done) return 0;
var index: usize = 0;
while (index == 0) {
const amt = try req.response.parser.read(&req.connection.?.data, buf[index..], req.response.skip);
if (amt == 0 and req.response.parser.done) break;
index += amt;
}
return index;
}
pub const WaitError = RequestError || StartError || TransferReadError || proto.HeadersParser.CheckCompleteHeadError || Response.ParseError || Uri.ParseError || error{ TooManyHttpRedirects, RedirectRequiresResend, HttpRedirectMissingLocation, CompressionInitializationFailed, CompressionNotSupported };
/// Waits for a response from the server and parses any headers that are sent.
/// This function will block until the final response is received.
///
/// If `handle_redirects` is true and the request has no payload, then this function will automatically follow
/// redirects. If a request payload is present, then this function will error with error.RedirectRequiresResend.
pub fn wait(req: *Request) WaitError!void {
while (true) { // handle redirects
while (true) { // read headers
try req.connection.?.data.fill();
const nchecked = try req.response.parser.checkCompleteHead(req.client.allocator, req.connection.?.data.peek());
req.connection.?.data.drop(@as(u16, @intCast(nchecked)));
if (req.response.parser.state.isContent()) break;
}
try req.response.parse(req.response.parser.header_bytes.items, false);
if (req.response.status == .@"continue") {
req.response.parser.done = true; // we're done parsing the continue response, reset to prepare for the real response
req.response.parser.reset();
break;
}
// we're switching protocols, so this connection is no longer doing http
if (req.response.status == .switching_protocols or (req.method == .CONNECT and req.response.status == .ok)) {
req.connection.?.data.closing = false;
req.response.parser.done = true;
}
// we default to using keep-alive if not provided in the client if the server asks for it
const req_connection = req.headers.getFirstValue("connection");
const req_keepalive = req_connection != null and !std.ascii.eqlIgnoreCase("close", req_connection.?);
const res_connection = req.response.headers.getFirstValue("connection");
const res_keepalive = res_connection != null and !std.ascii.eqlIgnoreCase("close", res_connection.?);
if (res_keepalive and (req_keepalive or req_connection == null)) {
req.connection.?.data.closing = false;
} else {
req.connection.?.data.closing = true;
}
if (req.response.transfer_encoding) |te| {
switch (te) {
.chunked => {
req.response.parser.next_chunk_length = 0;
req.response.parser.state = .chunk_head_size;
},
}
} else if (req.response.content_length) |cl| {
req.response.parser.next_chunk_length = cl;
if (cl == 0) req.response.parser.done = true;
} else {
req.response.parser.done = true;
}
// HEAD requests have no body
if (req.method == .HEAD) {
req.response.parser.done = true;
}
if (req.response.status.class() == .redirect and req.handle_redirects) {
req.response.skip = true;
// skip the body of the redirect response, this will at least leave the connection in a known good state.
const empty = @as([*]u8, undefined)[0..0];
assert(try req.transferRead(empty) == 0); // we're skipping, no buffer is necessary
if (req.redirects_left == 0) return error.TooManyHttpRedirects;
const location = req.response.headers.getFirstValue("location") orelse
return error.HttpRedirectMissingLocation;
const arena = req.arena.allocator();
const location_duped = try arena.dupe(u8, location);
const new_url = Uri.parse(location_duped) catch try Uri.parseWithoutScheme(location_duped);
const resolved_url = try req.uri.resolve(new_url, false, arena);
// is the redirect location on the same domain, or a subdomain of the original request?
const is_same_domain_or_subdomain = std.ascii.endsWithIgnoreCase(resolved_url.host.?, req.uri.host.?) and (resolved_url.host.?.len == req.uri.host.?.len or resolved_url.host.?[resolved_url.host.?.len - req.uri.host.?.len - 1] == '.');
if (resolved_url.host == null or !is_same_domain_or_subdomain or !std.ascii.eqlIgnoreCase(resolved_url.scheme, req.uri.scheme)) {
// we're redirecting to a different domain, strip privileged headers like cookies
_ = req.headers.delete("authorization");
_ = req.headers.delete("www-authenticate");
_ = req.headers.delete("cookie");
_ = req.headers.delete("cookie2");
}
if (req.response.status == .see_other or ((req.response.status == .moved_permanently or req.response.status == .found) and req.method == .POST)) {
// we're redirecting to a GET, so we need to change the method and remove the body
req.method = .GET;
req.transfer_encoding = .none;
_ = req.headers.delete("transfer-encoding");
_ = req.headers.delete("content-length");
_ = req.headers.delete("content-type");
}
if (req.transfer_encoding != .none) {
return error.RedirectRequiresResend; // The request body has already been sent. The request is still in a valid state, but the redirect must be handled manually.
}
try req.redirect(resolved_url);
try req.start(.{});
} else {
req.response.skip = false;
if (!req.response.parser.done) {
if (req.response.transfer_compression) |tc| switch (tc) {
.identity => req.response.compression = .none,
.compress => return error.CompressionNotSupported,
.deflate => req.response.compression = .{
.deflate = std.compress.zlib.decompressStream(req.client.allocator, req.transferReader()) catch return error.CompressionInitializationFailed,
},
.gzip => req.response.compression = .{
.gzip = std.compress.gzip.decompress(req.client.allocator, req.transferReader()) catch return error.CompressionInitializationFailed,
},
.zstd => req.response.compression = .{
.zstd = std.compress.zstd.decompressStream(req.client.allocator, req.transferReader()),
},
};
}
break;
}
}
}
pub const ReadError = TransferReadError || proto.HeadersParser.CheckCompleteHeadError || error{ DecompressionFailure, InvalidTrailers };
pub const Reader = std.io.Reader(*Request, ReadError, read);
pub fn reader(req: *Request) Reader {
return .{ .context = req };
}
/// Reads data from the response body. Must be called after `do`.
pub fn read(req: *Request, buffer: []u8) ReadError!usize {
const out_index = switch (req.response.compression) {
.deflate => |*deflate| deflate.read(buffer) catch return error.DecompressionFailure,
.gzip => |*gzip| gzip.read(buffer) catch return error.DecompressionFailure,
.zstd => |*zstd| zstd.read(buffer) catch return error.DecompressionFailure,
else => try req.transferRead(buffer),
};
if (out_index == 0) {
const has_trail = !req.response.parser.state.isContent();
while (!req.response.parser.state.isContent()) { // read trailing headers
try req.connection.?.data.fill();
const nchecked = try req.response.parser.checkCompleteHead(req.client.allocator, req.connection.?.data.peek());
req.connection.?.data.drop(@as(u16, @intCast(nchecked)));
}
if (has_trail) {
req.response.headers.clearRetainingCapacity();
// The response headers before the trailers are already guaranteed to be valid, so they will always be parsed again and cannot return an error.
// This will *only* fail for a malformed trailer.
req.response.parse(req.response.parser.header_bytes.items, true) catch return error.InvalidTrailers;
}
}
return out_index;
}
/// Reads data from the response body. Must be called after `do`.
pub fn readAll(req: *Request, buffer: []u8) !usize {
var index: usize = 0;
while (index < buffer.len) {
const amt = try read(req, buffer[index..]);
if (amt == 0) break;
index += amt;
}
return index;
}
pub const WriteError = Connection.WriteError || error{ NotWriteable, MessageTooLong };
pub const Writer = std.io.Writer(*Request, WriteError, write);
pub fn writer(req: *Request) Writer {
return .{ .context = req };
}
/// Write `bytes` to the server. The `transfer_encoding` request header determines how data will be sent.
pub fn write(req: *Request, bytes: []const u8) WriteError!usize {
switch (req.transfer_encoding) {
.chunked => {
try req.connection.?.data.writer().print("{x}\r\n", .{bytes.len});
try req.connection.?.data.writeAll(bytes);
try req.connection.?.data.writeAll("\r\n");
return bytes.len;
},
.content_length => |*len| {
if (len.* < bytes.len) return error.MessageTooLong;
const amt = try req.connection.?.data.write(bytes);
len.* -= amt;
return amt;
},
.none => return error.NotWriteable,
}
}
pub fn writeAll(req: *Request, bytes: []const u8) WriteError!void {
var index: usize = 0;
while (index < bytes.len) {
index += try write(req, bytes[index..]);
}
}
pub const FinishError = WriteError || error{MessageNotCompleted};
/// Finish the body of a request. This notifies the server that you have no more data to send.
pub fn finish(req: *Request) FinishError!void {
switch (req.transfer_encoding) {
.chunked => try req.connection.?.data.writeAll("0\r\n\r\n"),
.content_length => |len| if (len != 0) return error.MessageNotCompleted,
.none => {},
}
}
};
pub const HttpProxy = struct {
pub const ProxyAuthentication = union(enum) {
basic: []const u8,
custom: []const u8,
};
protocol: Connection.Protocol,
host: []const u8,
port: ?u16 = null,
/// The value for the Proxy-Authorization header.
auth: ?ProxyAuthentication = null,
};
/// Release all associated resources with the client.
/// TODO: currently leaks all request allocated data
pub fn deinit(client: *Client) void {
client.connection_pool.deinit(client);
client.ca_bundle.deinit(client.allocator);
client.* = undefined;
}
pub const ConnectUnproxiedError = Allocator.Error || error{ ConnectionRefused, NetworkUnreachable, ConnectionTimedOut, ConnectionResetByPeer, TemporaryNameServerFailure, NameServerFailure, UnknownHostName, HostLacksNetworkAddresses, UnexpectedConnectFailure, TlsInitializationFailed };
/// Connect to `host:port` using the specified protocol. This will reuse a connection if one is already open.
/// This function is threadsafe.
pub fn connectUnproxied(client: *Client, host: []const u8, port: u16, protocol: Connection.Protocol) ConnectUnproxiedError!*ConnectionPool.Node {
if (client.connection_pool.findConnection(.{
.host = host,
.port = port,
.is_tls = protocol == .tls,
})) |node|
return node;
const conn = try client.allocator.create(ConnectionPool.Node);
errdefer client.allocator.destroy(conn);
conn.* = .{ .data = undefined };
const stream = net.tcpConnectToHost(client.allocator, host, port) catch |err| switch (err) {
error.ConnectionRefused => return error.ConnectionRefused,
error.NetworkUnreachable => return error.NetworkUnreachable,
error.ConnectionTimedOut => return error.ConnectionTimedOut,
error.ConnectionResetByPeer => return error.ConnectionResetByPeer,
error.TemporaryNameServerFailure => return error.TemporaryNameServerFailure,
error.NameServerFailure => return error.NameServerFailure,
error.UnknownHostName => return error.UnknownHostName,
error.HostLacksNetworkAddresses => return error.HostLacksNetworkAddresses,
else => return error.UnexpectedConnectFailure,
};
errdefer stream.close();
conn.data = .{
.stream = stream,
.tls_client = undefined,
.protocol = protocol,
.host = try client.allocator.dupe(u8, host),
.port = port,
};
errdefer client.allocator.free(conn.data.host);
switch (protocol) {
.plain => {},
.tls => {
conn.data.tls_client = try client.allocator.create(std.crypto.tls.Client);
errdefer client.allocator.destroy(conn.data.tls_client);
conn.data.tls_client.* = std.crypto.tls.Client.init(stream, client.ca_bundle, host) catch return error.TlsInitializationFailed;
// This is appropriate for HTTPS because the HTTP headers contain
// the content length which is used to detect truncation attacks.
conn.data.tls_client.allow_truncation_attacks = true;
},
}
client.connection_pool.addUsed(conn);
return conn;
}
pub const ConnectUnixError = Allocator.Error || std.os.SocketError || error{ NameTooLong, Unsupported } || std.os.ConnectError;
pub fn connectUnix(client: *Client, path: []const u8) ConnectUnixError!*ConnectionPool.Node {
if (!net.has_unix_sockets) return error.Unsupported;
if (client.connection_pool.findConnection(.{
.host = path,
.port = 0,
.is_tls = false,
})) |node|
return node;
const conn = try client.allocator.create(ConnectionPool.Node);
errdefer client.allocator.destroy(conn);
conn.* = .{ .data = undefined };
const stream = try std.net.connectUnixSocket(path);
errdefer stream.close();
conn.data = .{
.stream = stream,
.tls_client = undefined,
.protocol = .plain,
.host = try client.allocator.dupe(u8, path),
.port = 0,
};
errdefer client.allocator.free(conn.data.host);
client.connection_pool.addUsed(conn);
return conn;
}
// Prevents a dependency loop in request()
const ConnectErrorPartial = ConnectUnproxiedError || error{ UnsupportedUrlScheme, ConnectionRefused };
pub const ConnectError = ConnectErrorPartial || RequestError;
pub fn connect(client: *Client, host: []const u8, port: u16, protocol: Connection.Protocol) ConnectError!*ConnectionPool.Node {
if (client.connection_pool.findConnection(.{
.host = host,
.port = port,
.is_tls = protocol == .tls,
})) |node|
return node;
if (client.proxy) |proxy| {
const proxy_port: u16 = proxy.port orelse switch (proxy.protocol) {
.plain => 80,
.tls => 443,
};
const conn = try client.connectUnproxied(proxy.host, proxy_port, proxy.protocol);
conn.data.proxied = true;
return conn;
} else {
return client.connectUnproxied(host, port, protocol);
}
}
pub const RequestError = ConnectUnproxiedError || ConnectErrorPartial || Request.StartError || std.fmt.ParseIntError || Connection.WriteError || error{
UnsupportedUrlScheme,
UriMissingHost,
CertificateBundleLoadFailure,
UnsupportedTransferEncoding,
};
pub const RequestOptions = struct {
version: http.Version = .@"HTTP/1.1",
handle_redirects: bool = true,
max_redirects: u32 = 3,
header_strategy: StorageStrategy = .{ .dynamic = 16 * 1024 },
/// Must be an already acquired connection.
connection: ?*ConnectionPool.Node = null,
pub const StorageStrategy = union(enum) {
/// In this case, the client's Allocator will be used to store the
/// entire HTTP header. This value is the maximum total size of
/// HTTP headers allowed, otherwise
/// error.HttpHeadersExceededSizeLimit is returned from read().
dynamic: usize,
/// This is used to store the entire HTTP header. If the HTTP
/// header is too big to fit, `error.HttpHeadersExceededSizeLimit`
/// is returned from read(). When this is used, `error.OutOfMemory`
/// cannot be returned from `read()`.
static: []u8,
};
};
pub const protocol_map = std.ComptimeStringMap(Connection.Protocol, .{
.{ "http", .plain },
.{ "ws", .plain },
.{ "https", .tls },
.{ "wss", .tls },
});
/// Form and send a http request to a server.
///
/// `uri` must remain alive during the entire request.
/// `headers` is cloned and may be freed after this function returns.
///
/// The caller is responsible for calling `deinit()` on the `Request`.
/// This function is threadsafe.
pub fn request(client: *Client, method: http.Method, uri: Uri, headers: http.Headers, options: RequestOptions) RequestError!Request {
const protocol = protocol_map.get(uri.scheme) orelse return error.UnsupportedUrlScheme;
const port: u16 = uri.port orelse switch (protocol) {
.plain => 80,
.tls => 443,
};
const host = uri.host orelse return error.UriMissingHost;
if (protocol == .tls and @atomicLoad(bool, &client.next_https_rescan_certs, .Acquire)) {
client.ca_bundle_mutex.lock();
defer client.ca_bundle_mutex.unlock();
if (client.next_https_rescan_certs) {
client.ca_bundle.rescan(client.allocator) catch return error.CertificateBundleLoadFailure;
@atomicStore(bool, &client.next_https_rescan_certs, false, .Release);
}
}
const conn = options.connection orelse try client.connect(host, port, protocol);
var req: Request = .{
.uri = uri,
.client = client,
.connection = conn,
.headers = try headers.clone(client.allocator), // Headers must be cloned to properly handle header transformations in redirects.
.method = method,
.version = options.version,
.redirects_left = options.max_redirects,
.handle_redirects = options.handle_redirects,
.response = .{
.status = undefined,
.reason = undefined,
.version = undefined,
.headers = http.Headers{ .allocator = client.allocator, .owned = false },
.parser = switch (options.header_strategy) {
.dynamic => |max| proto.HeadersParser.initDynamic(max),
.static => |buf| proto.HeadersParser.initStatic(buf),
},
},
.arena = undefined,
};
errdefer req.deinit();
req.arena = std.heap.ArenaAllocator.init(client.allocator);
return req;
}
pub const FetchOptions = struct {
pub const Location = union(enum) {
url: []const u8,
uri: Uri,
};
pub const Payload = union(enum) {
string: []const u8,
file: std.fs.File,
none,
};
pub const ResponseStrategy = union(enum) {
storage: RequestOptions.StorageStrategy,
file: std.fs.File,
none,
};
header_strategy: RequestOptions.StorageStrategy = .{ .dynamic = 16 * 1024 },
response_strategy: ResponseStrategy = .{ .storage = .{ .dynamic = 16 * 1024 * 1024 } },
location: Location,
method: http.Method = .GET,
headers: http.Headers = http.Headers{ .allocator = std.heap.page_allocator, .owned = false },
payload: Payload = .none,
raw_uri: bool = false,
};
pub const FetchResult = struct {
status: http.Status,
body: ?[]const u8 = null,
headers: http.Headers,
allocator: Allocator,
options: FetchOptions,
pub fn deinit(res: *FetchResult) void {
if (res.options.response_strategy == .storage and res.options.response_strategy.storage == .dynamic) {
if (res.body) |body| res.allocator.free(body);
}
res.headers.deinit();
}
};
pub fn fetch(client: *Client, allocator: Allocator, options: FetchOptions) !FetchResult {
const has_transfer_encoding = options.headers.contains("transfer-encoding");
const has_content_length = options.headers.contains("content-length");
if (has_content_length or has_transfer_encoding) return error.UnsupportedHeader;
const uri = switch (options.location) {
.url => |u| try Uri.parse(u),
.uri => |u| u,
};
var req = try request(client, options.method, uri, options.headers, .{
.header_strategy = options.header_strategy,
.handle_redirects = options.payload == .none,
});
defer req.deinit();
{ // Block to maintain lock of file to attempt to prevent a race condition where another process modifies the file while we are reading it.
// This relies on other processes actually obeying the advisory lock, which is not guaranteed.
if (options.payload == .file) try options.payload.file.lock(.shared);
defer if (options.payload == .file) options.payload.file.unlock();
switch (options.payload) {
.string => |str| req.transfer_encoding = .{ .content_length = str.len },
.file => |file| req.transfer_encoding = .{ .content_length = (try file.stat()).size },
.none => {},
}
try req.start(.{ .raw_uri = options.raw_uri });
switch (options.payload) {
.string => |str| try req.writeAll(str),
.file => |file| {
try file.seekTo(0);
var fifo = std.fifo.LinearFifo(u8, .{ .Static = 8192 }).init();
try fifo.pump(file.reader(), req.writer());
},
.none => {},
}
try req.finish();
}
try req.wait();
var res = FetchResult{
.status = req.response.status,
.headers = try req.response.headers.clone(allocator),
.allocator = allocator,
.options = options,
};
switch (options.response_strategy) {
.storage => |storage| switch (storage) {
.dynamic => |max| res.body = try req.reader().readAllAlloc(allocator, max),
.static => |buf| res.body = buf[0..try req.reader().readAll(buf)],
},
.file => |file| {
var fifo = std.fifo.LinearFifo(u8, .{ .Static = 8192 }).init();
try fifo.pump(req.reader(), file.writer());
},
.none => { // Take advantage of request internals to discard the response body and make the connection available for another request.
req.response.skip = true;
const empty = @as([*]u8, undefined)[0..0];
assert(try req.transferRead(empty) == 0); // we're skipping, no buffer is necessary
},
}
return res;
}
test {
const builtin = @import("builtin");
const native_endian = comptime builtin.cpu.arch.endian();
if (builtin.zig_backend == .stage2_llvm and native_endian == .Big) {
// https://github.com/ziglang/zig/issues/13782
return error.SkipZigTest;
}
if (builtin.os.tag == .wasi) return error.SkipZigTest;
std.testing.refAllDecls(@This());
}