Previously, fs.path handled a few of the Windows path types, but not all of them, and only a few of them correctly/consistently. This commit aims to make `std.fs.path` correct and consistent in handling all possible Win32 path types.
This commit also slightly nudges the codebase towards a separation of Win32 paths and NT paths, as NT paths are not actually distinguishable from Win32 paths from looking at their contents alone (i.e. `\Device\Foo` could be an NT path or a Win32 rooted path, no way to tell without external context). This commit formalizes `std.fs.path` being fully concerned with Win32 paths, and having no special detection/handling of NT paths.
Resources on Windows path types, and Win32 vs NT paths:
- https://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
- https://chrisdenton.github.io/omnipath/Overview.html
- https://learn.microsoft.com/en-us/windows/win32/fileio/naming-a-file
API additions/changes/deprecations
- `std.os.windows.getWin32PathType` was added (it is analogous to `RtlDetermineDosPathNameType_U`), while `std.os.windows.getNamespacePrefix` and `std.os.windows.getUnprefixedPathType` were deleted. `getWin32PathType` forms the basis on which the updated `std.fs.path` functions operate.
- `std.fs.path.parsePath`, `std.fs.path.parsePathPosix`, and `std.fs.path.parsePathWindows` were added, while `std.fs.path.windowsParsePath` was deprecated. The new `parsePath` functions provide the "root" and the "kind" of a path, which is platform-specific. The now-deprecated `windowsParsePath` did not handle all possible path types, while the new `parsePathWindows` does.
- `std.fs.path.diskDesignator` has been deprecated in favor of `std.fs.path.parsePath`, and same deal with `diskDesignatorWindows` -> `parsePathWindows`
- `relativeWindows` is now a compile error when *not* targeting Windows, while `relativePosix` is now a compile error when targeting Windows. This is because those functions read/use the CWD path which will behave improperly when used from a system with different path semantics (e.g. calling `relativePosix` from a Windows system with a CWD like `C:\foo\bar` will give you a bogus result since that'd be treated as a single relative component when using POSIX semantics). This also allows `relativeWindows` to use Windows-specific APIs for getting the CWD and environment variables to cut down on allocations.
- `componentIterator`/`ComponentIterator.init` have been made infallible. These functions used to be able to error on UNC paths with an empty server component, and on paths that were assumed to be NT paths, but now:
+ We follow the lead of `RtlDetermineDosPathNameType_U`/`RtlGetFullPathName_U` in how it treats a UNC path with an empty server name (e.g. `\\\share`) and allow it, even if it'll be invalid at the time of usage
+ Now that `std.fs.path` assumes paths are Win32 paths and not NT paths, we don't have to worry about NT paths
Behavior changes
- `std.fs.path` generally: any combinations of mixed path separators for UNC paths are universally supported, e.g. `\/server/share`, `/\server\share`, `/\server/\\//share` are all seen as equivalent UNC paths
- `resolveWindows` handles all path types more appropriately/consistently.
+ `//` and `//foo` used to be treated as a relative path, but are now seen as UNC paths
+ If a rooted/drive-relative path cannot be resolved against anything more definite, the result will remain a rooted/drive-relative path.
+ I've created [a script to generate the results of a huge number of permutations of different path types](https://gist.github.com/squeek502/9eba7f19cad0d0d970ccafbc30f463bf) (the result of running the script is also included for anyone that'd like to vet the behavior).
- `dirnameWindows` now treats the drive-relative root as the dirname of a drive-relative path with a component, e.g. `dirname("C:foo")` is now `C:`, whereas before it would return null. `dirnameWindows` also handles local device paths appropriately now.
- `basenameWindows` now handles all path types more appropriately. The most notable change here is `//a` being treated as a partial UNC path now and therefore `basename` will return `""` for it, whereas before it would return `"a"`
- `relativeWindows` will now do its best to resolve against the most appropriate CWD for each path, e.g. relative for `D:foo` will look at the CWD to check if the drive letter matches, and if not, look at the special environment variable `=D:` to get the shell-defined CWD for that drive, and if that doesn't exist, then it'll resolve against `D:\`.
Implementation details
- `resolveWindows` previously looped through the paths twice to build up the relevant info before doing the actual resolution. Now, `resolveWindows` iterates backwards once and keeps track of which paths are actually relevant using a bit set, which also allows it to break from the loop when it's no longer possible for earlier paths to matter.
- A standalone test was added to test parts of `relativeWindows` since the CWD resolution logic depends on CWD information from the PEB and environment variables
Edge cases worth noting
- A strange piece of trivia that I found out while working on this is that it's technically possible to have a drive letter that it outside the intended A-Z range, or even outside the ASCII range entirely. Since we deal with both WTF-8 and WTF-16 paths, `path[0]`/`path[1]`/`path[2]` will not always refer to the same bits of information, so to get consistent behavior, some decision about how to deal with this edge case had to be made. I've made the choice to conform with how `RtlDetermineDosPathNameType_U` works, i.e. treat the first WTF-16 code unit as the drive letter. This means that when working with WTF-8, checking for drive-relative/drive-absolute paths is a bit more complicated. For more details, see the lengthy comment in `std.os.windows.getWin32PathType`
- `relativeWindows` will now almost always be able to return either a fully-qualified absolute path or a relative path, but there's one scenario where it may return a rooted path: when the CWD gotten from the PEB is not a drive-absolute or UNC path (if that's actually feasible/possible?). An alternative approach to this scenario might be to resolve against the `HOMEDRIVE` env var if available, and/or default to `C:\` as a last resort in order to guarantee the result of `relative` is never a rooted path.
- Partial UNC paths (e.g. `\\server` instead of `\\server\share`) are a bit awkward to handle, generally. Not entirely sure how best to handle them, so there may need to be another pass in the future to iron out any issues that arise. As of now the behavior is:
+ For `relative`, any part of a UNC disk designator is treated as the "root" and therefore isn't applicable for relative paths, e.g. calling `relative` with `\\server` and `\\server\share` will result in `\\server\share` rather than just `share` and if `relative` is called with `\\server\foo` and `\\server\bar` the result will be `\\server\bar` rather than `..\bar`
+ For `resolve`, any part of a UNC disk designator is also treated as the "root", but relative and rooted paths are still elligable for filling in missing portions of the disk designator, e.g. `resolve` with `\\server` and `foo` or `\foo` will result in `\\server\foo`
Fixes#25703Closes#25702
- Affects the following functions:
+ `std.fs.Dir.readLinkW`
+ `std.os.windows.ReadLink`
+ `std.os.windows.ntToWin32Namespace`
+ `std.posix.readlinkW`
+ `std.posix.readlinkatW`
Each of these functions (except `ntToWin32Namespace`) took WTF-16 as input and would output WTF-8, which makes optimal buffer re-use difficult at callsites and could force unnecessary WTF-16 <-> WTF-8 conversion during an intermediate step.
The functions have been updated to output WTF-16, and also allow for the path and the output to re-use the same buffer (i.e. in-place modification), which can reduce the stack usage at callsites. For example, all of `std.fs.Dir.readLink`/`readLinkZ`/`std.posix.readlink`/`readlinkZ`/`readlinkat`/`readlinkatZ` have had their stack usage reduced by one PathSpace struct (64 KiB) when targeting Windows.
The new `ntToWin32Namespace` takes an output buffer and returns a slice from that instead of returning a PathSpace, which is necessary to make the above possible.
* File.Writer.seekBy passed wrong offset to setPosAdjustingBuffer.
* File.Writer.sendFile incorrectly used non-logical position.
Related to 1d764c1fdf
Test case provided by:
Co-authored-by: Kendall Condon <goon.pri.low@gmail.com>
This enables depth-related use cases without any dependency on the Walker's internal stack which doesn't always pertain to the actual depth of the current entry (i.e. recursing into a directory immediately affects the stack).
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
Btrfs at least supports 16 EiB files (limited in practice to 8EiB by the
Linux VFS code which uses signed 64-bit offsets). So fix the fs.zig test
case to expect either a FileTooBig or success from truncating a file to
8EiB. And test that beyond that size the offset is interpreted as a
negative number.
Fixes#24242
Add a test for std.fs.File's `setEndPos` (which is a simple wrapper around
`std.posix.ftruncate`) to exercise some success and failure paths.
Explicitly check that the `ftruncate` length isn't negative when
interpreted as a signed value. This avoids having to decode overloaded
`EINVAL` errors.
Add errno handling to Windows path to map INVALID_PARAMETER to FileTooBig.
Fixes#22960
Use error.AccessDenied for permissions (rights) failures on Wasi
(`EACCES`) and error.PermissionDenied (`EPERM`) for systemic failures.
And pass-through underlying Wasi errors (PermissionDenied or AccessDenied)
without mapping.
* use `tmp.dir.realpathAlloc()` to get full path into tmpDir instances
* use `testing.allocator` where that simplifies things (vs. manual ArenaAllocator for 1 or 2 allocs)
* Trust `TmpDir.cleanup()` to clean up contained files and sub-trees
* Remove some unnecessary absolute paths (enabling WASI to run the tests)
* Drop some no-longer necessary `[_][]const u8` casts
* Add scopes to reduce `var` usage in favor of `const`
Zig's copy of the `SYMLINK_{NO,}FOLLOW` constants from wasi-musl was
wrong, as were the `IFIFO` and `IFSOCK` file type flags. Fix these up,
and add comments pointing to exactly where they come from (as the
wasi-musl source has lots of unused, different definitions of these
constants).
Add tests for the Zig convention that WASM preopen 3 is the current
working directory. This is true for WASM with or without libc.
Enable several fs and posix tests that are now passing (not necessarily
because of this change) on wasm targets.
Fixes#20890.
Deprecated aliases that are now compile errors:
- `std.fs.MAX_PATH_BYTES` (renamed to `std.fs.max_path_bytes`)
- `std.mem.tokenize` (split into `tokenizeAny`, `tokenizeSequence`, `tokenizeScalar`)
- `std.mem.split` (split into `splitSequence`, `splitAny`, `splitScalar`)
- `std.mem.splitBackwards` (split into `splitBackwardsSequence`, `splitBackwardsAny`, `splitBackwardsScalar`)
- `std.unicode`
+ `utf16leToUtf8Alloc`, `utf16leToUtf8AllocZ`, `utf16leToUtf8`, `fmtUtf16le` (all renamed to have capitalized `Le`)
+ `utf8ToUtf16LeWithNull` (renamed to `utf8ToUtf16LeAllocZ`)
- `std.zig.CrossTarget` (moved to `std.Target.Query`)
Deprecated `lib/std/std.zig` decls were deleted instead of made a `@compileError` because the `refAllDecls` in the test block would trigger the `@compileError`. The deleted top-level `std` namespaces are:
- `std.rand` (renamed to `std.Random`)
- `std.TailQueue` (renamed to `std.DoublyLinkedList`)
- `std.ChildProcess` (renamed/moved to `std.process.Child`)
This is not exhaustive. Deprecated aliases that I didn't touch:
+ `std.io.*`
+ `std.Build.*`
+ `std.builtin.Mode`
+ `std.zig.c_translation.CIntLiteralRadix`
+ anything in `src/`
this patch renames ComptimeStringMap to StaticStringMap, makes it
accept only a single type parameter, and return a known struct type
instead of an anonymous struct. initial motivation for these changes
was to reduce the 'very long type names' issue described here
https://github.com/ziglang/zig/pull/19682.
this breaks the previous API. users will now need to write:
`const map = std.StaticStringMap(T).initComptime(kvs_list);`
* move `kvs_list` param from type param to an `initComptime()` param
* new public methods
* `keys()`, `values()` helpers
* `init(allocator)`, `deinit(allocator)` for runtime data
* `getLongestPrefix(str)`, `getLongestPrefixIndex(str)` - i'm not sure
these belong but have left in for now incase they are deemed useful
* performance notes:
* i posted some benchmarking results here:
https://github.com/travisstaloch/comptime-string-map-revised/issues/1
* i noticed a speedup reducing the size of the struct from 48 to 32
bytes and thus use u32s instead of usize for all length fields
* i noticed speedup storing KVs as a struct of arrays
* latest benchmark shows these wall_time improvements for
debug/safe/small/fast builds: -6.6% / -10.2% / -19.1% / -8.9%. full
output in link above.
Now, all the tests that use `testWithAllSupportedPathTypes` will also run each test with both `/` and `\` as the path separator on Windows.
Also, removes the now-redundant "Dir.symLink with relative target that has a / path separator" since the same thing is now tested in the "Dir.readLink" test
Windows paths now use WTF-16 <-> WTF-8 conversion everywhere, which is lossless. Previously, conversion of ill-formed UTF-16 paths would either fail or invoke illegal behavior.
WASI paths must be valid UTF-8, and the relevant function calls have been updated to handle the possibility of failure due to paths not being encoded/encodable as valid UTF-8.
Closes#18694Closes#1774Closes#2565
* std.c: consolidate some definitions, making them share code. For
example, freebsd, dragonfly, and openbsd can all share the same
`pthread_mutex_t` definition.
* add type safety to std.c.O
- this caught a bug where mode flags were incorrectly passed as the
open flags.
* 3 fewer uses of usingnamespace keyword
* as per convention, remove purposeless field prefixes from struct field
names even if they have those prefixes in the corresponding C code.
* fix incorrect wasi libc Stat definition
* remove C definitions from incorrectly being in std.os.wasi
* make std.os.wasi definitions type safe
* go through wasi native APIs even when linking libc because the libc
APIs are problematic and wasteful
* don't expose WASI definitions in std.posix
* remove std.os.wasi.rights_t.ALL: this is a footgun. should it be all
future rights too? or only all current rights known? both are
the wrong answer.