This is contained in the `test` step, so is tested by CI.
This commit also includes some enhancements to the `incr-check` tool to
make this work correctly.
Broadly speaking, versions 6, 7, and 8 are the ones that are in common use. Of
these, v7 is what you'll typically see for 32-bit Arm today. So let's actually
make sure that that's what we're testing.
This has been planned for quite some time; this commit finally does it.
Also implements file system watching integration in the make()
implementation for UpdateSourceFiles and fixes the reporting of step
caching for both.
WriteFile does not yet have file system watching integration.
I'm so sorry.
This commit was just meant to be making all types fully resolve by
queueing resolution at the moment of their creation. Unfortunately, a
lot of dominoes ended up falling. Here's what happened:
* I added a work queue job to fully resolve a type.
* I realised that from here we could eliminate `Sema.types_to_resolve`
if we made function codegen a separate job. This is desirable for
simplicity of both spec and implementation.
* This led to a new AIR traversal to detect whether any required type is
unresolved. If a type in the AIR failed to resolve, then we can't run
codegen.
* Because full type resolution now occurs by the work queue job, a bug
was exposed whereby error messages for type resolution were associated
with the wrong `Decl`, resulting in duplicate error messages when the
type was also resolved "by" its owner `Decl` (which really *all*
resolution should be done on).
* A correct fix for this requires using a different `Sema` when
performing type resolution: we need a `Sema` owned by the type. Also
note that this fix is necessary for incremental compilation.
* This means a whole bunch of functions no longer need to take `Sema`s.
* First-order effects: `resolveTypeFields`, `resolveTypeLayout`, etc
* Second-order effects: `Type.abiAlignmentAdvanced`, `Value.orderAgainstZeroAdvanced`, etc
The end result of this is, in short, a more correct compiler and a
simpler language specification. This regressed a few error notes in the
test cases, but nothing that seems worth blocking this change.
Oh, also, I ripped out the old code in `test/src/Cases.zig` which
introduced a dependency on `Compilation`. This dependency was
problematic at best, and this code has been unused for a while. When we
re-enable incremental test cases, we must rewrite their executor to use
the compiler server protocol.
Adds a missing call to addLazyPathDependenciesOnly in
std.Build.Module.addCSourceFiles. Also fixes an issue in
std.Build.Step.WriteFile where it wasn't updating all the GeneratedFile
instances for every directory. To fix the second issue, I removed
all the GeneratedFile instances and now all files/directories reference
the steps main GeneratedFile via sub paths.
This commit adds several fixes and improvements for the Zig compiler
test harness.
1. -Dskip-translate-c option added for skipping the translate-c tests.
2. translate-c/run-translated-c tests in test/cases/* have been added to
the steps test-translate-c and test-run-translated-c. Closes#18224.
3. Custom name added to the CheckFile step for the translate-c step to
better communicate which test failed.
4. Test manifest key validation added to return an error if a manifest
contains an invalid key.
* make test names contain the fully qualified name
* make test filters match the fully qualified name
* allow multiple test filters, where a test is skipped if it does not
match any of the specified filters
This introduces the new test step `test-c-import`, and removes the
ability of the behavior tests to `@cImport` paths relative to `test`.
This allows the behavior tests to be run without translate c.